જો રેખા $y\, = \,mx\, + \,7\sqrt 3 $એ અતિવલય $\frac{{{x^2}}}{{24}} - \frac{{{y^2}}}{{18}} = 1$ ને લંબ હોય તો $m$ ની કિમત ............. થાય
$\frac{2}{{\sqrt 5 }}$
$\frac{{\sqrt 5 }}{2}$
$\frac{{\sqrt {15} }}{2}$
$\frac{3}{{\sqrt 5 }}$
અતિવલય ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ માટે $\theta $ ચલ હોય તો . . . . . ની કિંમત $\theta $ પર આધારિત નથી.
ધારો કે અતિવલય $H: \frac{x^{2}}{a^{2}}-y^{2}=1$ અને ઉપવલય $E: 3 x^{2}+4 y^{2}=12$ એવા છે કે જેથી $H$ ના નાભિલંબની લંબાઈ અને $E$ ના નાભિલંબની લંબાઈ સમાન છ. જો $e_{H}$ અને $e_{E}$ એ અનુક્રમે H અને ઉત્કેન્દ્રતા હોય, તો $12\left(e_{H}^{2}+e_{E}^{2}\right)$ નું મૂલ્ય છે.
ધારો કે $H _{ n }: \frac{x^2}{1+n}-\frac{y^2}{3+n}=1, n \in N$ છે.ધારો કે $k$ એ $n$ ની એવી લઘુતમ યુગ્મ કિંમત છે કે જેથી $H _{ k }$ ની ઉત્કેન્દ્રતા સંમેય સંખ્યા થાય.જો $H _{ k }$ ના નાભિલંબની લંબાઈ $l$ હોય, તો $21\,l =........$
વિધાન $ (A) $ : બિંદુ $(5, -4)$ એ અતિવલય $y^2 - 9x^2 + 1 = 0 $ ની અંદર આવેલું છે.
કારણ ${\rm{(R)}}$ બિંદુઓ ${\rm{ (}}{{\rm{x}}_{\rm{1}}}{\rm{, }}{{\rm{y}}_{\rm{1}}}{\rm{)}}$ એઅતિવલય ${\rm{ }}\,\,\frac{{{x^2}}}{{{a^2}}}\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1$ ની અંદર આવેલું , તો $\frac{{x_{^1}^2}}{{{a^2}}}\, - \,\,\frac{{y_1^2}}{{{b^2}}}\, - \,\,1\,\, < \,\,0$
પરવલય $y ^{2}=24 x$ પરના બિંદુ $(\alpha, \beta)$ માંથી સ્પર્શક દોરવામાં આવે છે જે રેખા $2 x+2 y=5$ ને લંબ છે તો અતિવલય $\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$ નો બિંદુ $(\alpha+4, \beta+4)$ આગળનો અભિલંબએ . .. બિંદુમાંથી પસાર ન થાય.